W9DXCC DXU/CTU 2024

Space Weather and Propagation

Carl Luetzelschwab K9LA k9la@arrl.net

The 64,000 Dollar Question

Does today's space weather tell us exactly what the ionosphere is doing today?

-- No --

It gives us a general idea of what's going on

Agenda

- Examples of the 64,000 dollar question
- Why can't we determine what's exactly going on from today's space weather?
- Disturbances to propagation
- The important space weather parameters
- General correlations
- A quick look at Cycle 25

Examples of the 64,000 Dollar Question

Example #1

- MUF is <u>m</u>aximum <u>u</u>seable <u>f</u>requency
- For a flux of 137, MUF could be anywhere from 28 MHz to 38 MHz

day	solar flux	MUF in MHz	trend
14	86.5	38.7	flux up MHE down
15	145	36.6	flux up, MUF down
13	148	28.4	flux down, MUF up
14	86.5	38.7	

Example #2

day	solar flux	MUF in MHz	trend
6	271	22.4	flux up, MUF down
7	292	21	
10	304	19.9	flux down, MUF up
11	288	24.2	

The correlation between the daily flux and the daily MUF is poor - in the short-term, SFI can go up and the MUF can go down – and vice versa

Why Can't We Determine What's Exactly Going On From Today's Space Weather?

The Three Sources of F₂ Region Variability

- 1. Solar radiation
 - > Best understood contributes the least to variability
- 2. Geomagnetic field activity
 - ➤ Decent understanding with STORM
 - https://www.swpc.noaa.gov/products/storm-timeempirical-ionospheric-correction
- 3. Events in the lower atmosphere coupling up to the ionosphere
 - Least understood
 - ➤ No parameters (yet)

Understanding 2 of 3 isn't good enough to understand propagation in the short-term

Disturbances to Propagation

G, S, R

- **G** Geomagnetic storm
 - ➤ Cause Earth-directed CME or Coronal Hole
 - Effect reduced F₂ region ionization
 - > Duration several days or more
- **S** Solar radiation storm
 - Cause concurrent big solar flare (M- and X-Class) and CME
 - > Effect degraded over-the-pole paths
 - ➤ Duration a couple days
- R Radio blackout
 - ➤ Cause big solar flare
 - > Effect increased D region ionization on daylight side of Earth
 - > Duration an hour or so lower frequencies affected most

Something We Don't See Very Often

Early May 2024 – All Three Disturbances to Propagation

radio blackout from a big solar flare – an hour or so

solar radiation storm from a concurrent solar flare and CME – a couple days **geomagnetic storm** from an Earth-directed CME (or Coronal Hole) – several days

The Important Space Weather Parameters

-- at least the ones that I think are important --

There's Lots of Data Available

NØNBH banner

- Image is from the home page at www.qrz.com
- Many other websites have even more data
- What we desire are parameters that correlate to the MUF and to the total path loss
 - MUF and loss determine if a QSO is possible

MUF Parameters

- We can divide the MUF parameters into two categories
 - Those that tell us how much the MUF should be (solar radiation)
 - Sunspot number, 10.7 cm solar flux, EUV
 - Those that tell us if there might be a <u>degradation</u> in the MUF (geomagnetic field)
 - K, A, B_Z, SW

Note that we can't do anything with events in the lower atmosphere

Details for the MUF Parameters

- SFI daily 10.7 cm solar flux
- SN daily sunspot number
- 304Å daily EUV at 30.4 nm
- K 3-hr index, logarithmic, 0 to 9
- A daily index, average of eight
 3-hr K indices, linear, 0 to 400
- B_z component of the Sun's magnetic field that is perpendicular to the ecliptic, aligns with Earth's N-S magnetic field, large negative is bad
- SW solar wind speed, quiet time is around 400 km/sec, higher could indicate elevated K

MUF US Boulder is a real-time measurement – if it's reported

Total Path Loss Parameters

- What makes up the total path loss?
 - free space path loss (spreading of the wave) constant
 - ➤ Ionospheric absorption in the D region it varies
 - ➤ Transmitter power, receiver sensitivity (may be limited by noise environment), antenna gains and ground reflections can help overcome loss constants
- Ionospheric absorption is the only one that varies in the short-term
 - > We have models that tell us what it should be
 - ➤ But we have no daily measurements that tell us what the ionospheric absorption really is today

MUF and Absorption on Our Bands

- Some physics
 - > Refraction inversely proportional to frequency²
 - > Absorption inversely proportional to frequency²
- 15m, 12m, 10m, 6m
 - > MUF is critical, absorption is minimal
- 160m, 80/75m, 60m, 40m
 - > MUF is usually high enough, absorption is critical
- 30m, 20m, 17m
 - > Transition bands generally good over a solar cycle

General Correlations

What We Desire for SFI and K

- 15m, 12m, 10m best during the day near solar max
 - \triangleright Long-term SFI (not just a couple days) \ge 100 and K \le 3
- 30m, 20m, 17m good throughout a solar cycle
 - \triangleright SFI generally not real critical and K \leq 3
- 160m, 75/80m, 60m, 40m best at night near solar min
 - \triangleright Long-term SFI \leq 80 and K \leq 3
- 6m F₂ best in fall/winter near big solar max
 - \triangleright Long-term SFI \ge 200 and K \le 3
 - \triangleright We will have some F_2 on 6m this fall and winter
 - More on this tomorrow

Caveats

- Radio blackout can cause band to go dead
 - ➤ Mitigation QSY to a higher band (slide 10)
- Geomagnetic storm lower MUFs
 - ➤ Mitigation move down in frequency
- Solar radiation storm over-the-pole degraded
 - Mitigation try other way around (short path vs long path)
- Spike in the K index can enhance 10m and 6m F₂ propagation at low and mid latitudes
- If you're a VHF/UHF type, desire K > 5 for auroral propagation

Quick Look at Cycle 25 – More Tomorrow

Summary

- We don't fully understand the short-term ionosphere
 - ➤ We can't predict what's happening today
 - Neither can VOACAP or other predictions programs
- In the long-term, higher SFI = higher MUF
- Cycle 25 is strong enough for consistent worldwide propagation on 15m, 12m, 10m
 - ➤ Should continue until 2027 or so
- Get on the air and have fun!

