CTU Presents

Contest-Grade Remote

Bill Fehring, W9KKN

• CTU • CONTEST UNIVERSITY

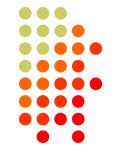
What is this talk about?



- There are an increasing number of reasons we're operating contests remotely
 - Station Location A contest station wants to be as far away from society as possible (QRM/RFI, neighbors/HOAs, etc.)
 - Staffing
 - It's increasingly difficult to get everyone to travel to a multi-op station
 - Aging operators / Competing priorities
 - Health Concerns
 - Expensive/Difficult Travel (great stations usually far away from large cities with airports)
 - XYL Support (A huge team invading a QTH might be a tall ask)
 - Testing a station before you get there!
 - Checking propagation
 - Planning what tools / parts to bring

What is this talk NOT about?

- This is not a presentation trying to generically describe how to build a remote ham radio station
- There is a wide solution space for remote operating
 - Not all of it is "contest grade" (yet)
- When I say "contest-grade" I mean high expectations with few compromises
 - It shouldn't affect your operating
 - It shouldn't affect your score
 - The other side of the QSO shouldn't know that you're a remote operator


Question

- If you had equal stations (antennas, QTH, etc.), with similar teams (capability/skill), who would win between an all-remote or all-in-person operation?
 - I think the all-in-person team still has an edge
- Why?
 - Because this isn't easy to get right.
- But Bill, ...

Some big names doing this...

- There are a few stations doing remote contesting quite successfully:
 - NJ4P (FlexRadio)
 - ZF5T (Mumble) / ZF1A (K3 + RemoteRig)
 - W2SC / 85PA (K3 + WriteLog)
 - K1LZ (Yaesu RCU / Icom RS-BA1 / Mumble / RemAud)
 - W2FU (RRC)
 - N6RO (RRC + K3 & RRC + Flex)
 - K6MTU (Flex)
 - W7RN (K3 + RRC)
 - WA6TQT/NO6T/K5ZO/KI6RRN (K3 + RRC)
 - numerous others...
- They have VERY different approaches to the problem

What is this talk about?

- You have to get all of these right...
 - Connectivity Quality (latency/jitter/packet loss)
 - Audio latency outside of the network
 - Operator Experience
 - Strategy
 - Contest Rules (don't get yourself DQed)

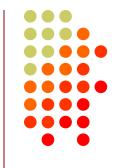
- External Hardware
 - RemoteRig (aka the gold standard) K3 "Twin"

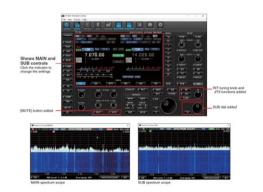
- Works with several different radios
- Very hard to find/obtain almost entirely on the secondary market
- Requires that each side have the hardware
- A little complicated to set up if you aren't used to lowlevel stuff

Built into the radio + software / hardware

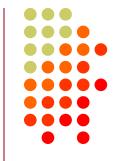
Elecraft K4

Flex Radio

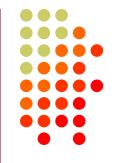




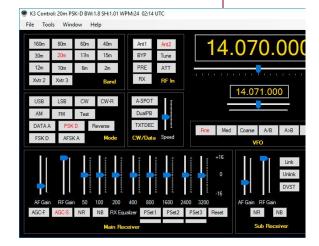
- Built into the radio + software / hardware
 - Icom
 - RS-BA1 (Windows)
 - DL8MRE SDR-Control (Mac / iPad)



- Built into the radio + software / hardware
 - Yaesu
 - SCU-LAN10 Hardware
 - Yaesu Remote Control Software (Windows)
 - DL8MRE FT-Control for Yaesu (Mac / iPad)



- Built into the radio + software / hardware
 - Kenwood
 - TS-890
 - ARCP-890 Remote Control Software (Windows)
 - DL8MRE TS-Control for Kenwood (Mac / iPad)

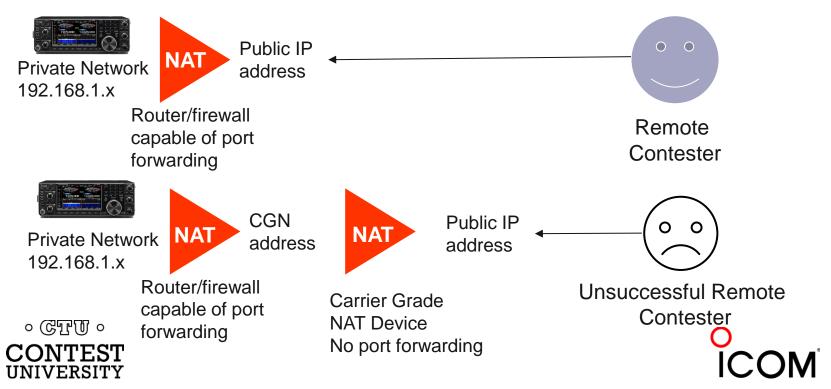




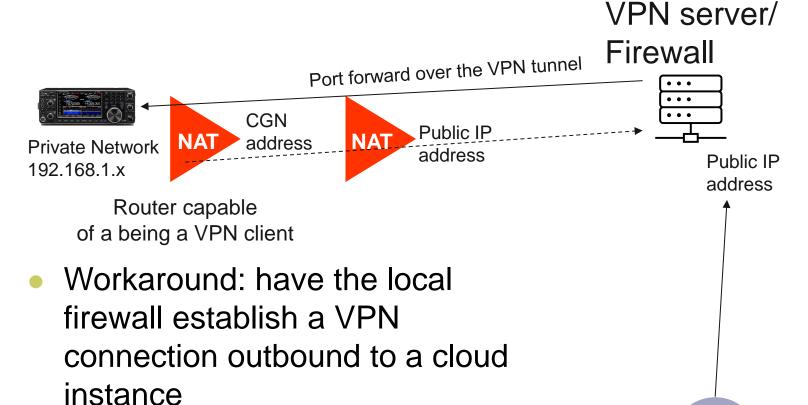
- Software + Soundcard approach
 - Mumble
 - Self-hosted servers
 - Gerry's servers
 - Sonobus Peer to peer
 - Writelog
 - RemAud
- Remote Operators mostly plug and play
- Multiple operators can usually listen in at the same time...
- Usually the "Radio Control" part is handled by something like Win4K3 (VA2FSQ) or just the logging program
- Usually the audio keying is handled by VOX and the CW keying is a local Winkeyer

What kind of Internet do I want for "contest-grade" remote?

- Latency Keep it under 50ms
- Loss ZERO.
- Jitter -- 20ms or less (note, it is part of total system latency)
- Bandwidth budget
 - 64-128kbps per audio channel
 - 1-2 mbps per waterfall
 - 1-50 mbps per remote desktop
 - Headroom to absorb anything else happening on the network
- Public IP address



What kind of Internet do I need for "contest-grade" remote?

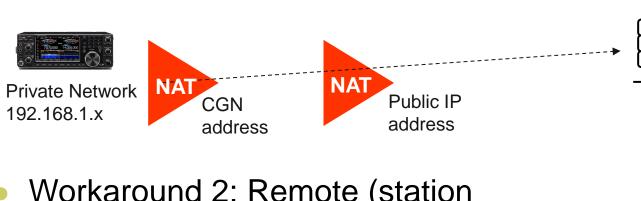


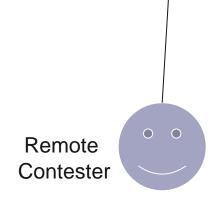
- Public IP address vs Carrier Grade NAT
 - Carrier grade NAT means that your ISP is making you share a public IP address with other users and you won't be able to host anything.
 - 100.64.0.0/10 address space
 - Common in Satellite / LTE / 5G / Rural WISPs
 - Many times, a real IP public address is available for more money

What if I can't get a public IP address?

 Port forward in reverse over the VPN

০ টামুখ্য ০


CONTEST


Remote Contester

What if I can't get a public IP address?

- Workaround 2: Remote (station side) Mumble client sends audio to a mumble server in the cloud
- No inbound connectivity required

Mumble

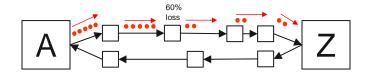
Public IP

address

Server

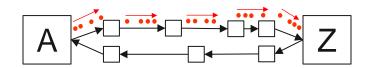
Concepts: Internet Latency

- Latency the measurement of time it takes for a packet to arrive from the source to the destination.
 - It is often NOT symmetrical on the Internet (A to B is not necessarily equal to B to A).. and probably doesn't even traverse the same physical path
 - Can be caused by
 - Speed of light (inversely proportional to its refractive index in mediums such as fiber optics)
 - Network congestion / buffering either locally, or at any point along the network path
 - Many home modems / routers will buffer excessively instead of dropping packets – Known as "buffer bloat"
 - It may vary over time such as during periods of heavy use
 - Evening online streaming usage (Netflix, Hulu, etc.)
 - When you use "ping" you are measuring the round-trip time.

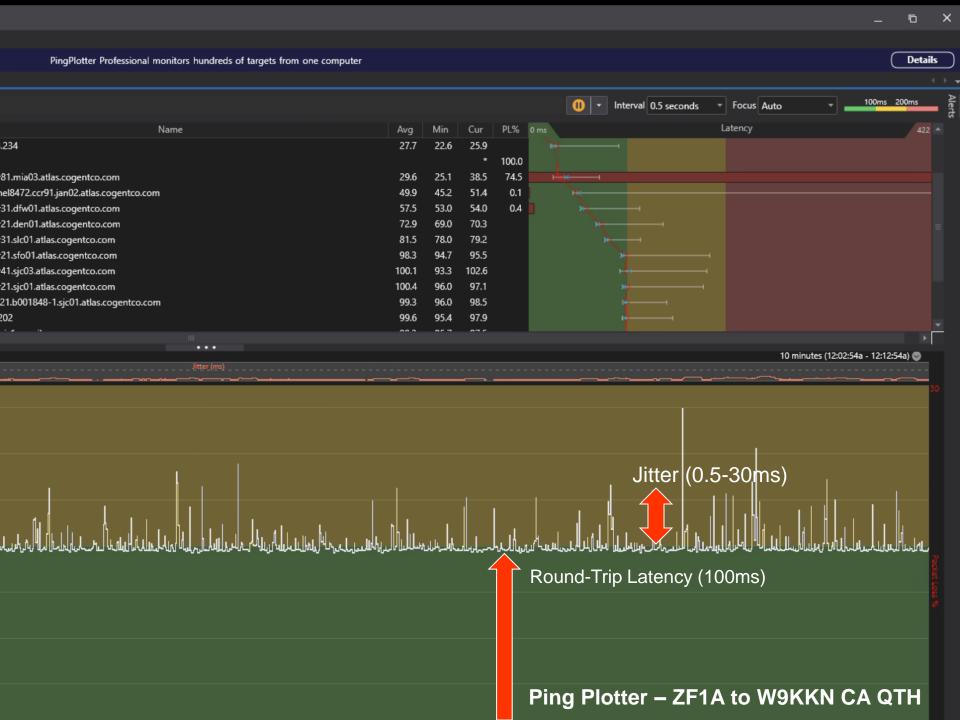


Concepts: Internet Packet Loss

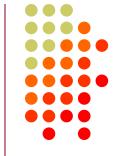
- Packet loss Packets that didn't make it to the other side
 - Usually caused by congestion and preceded by latency
 - Could also be caused by link errors or
 - Could be occurring at any point between you and the remote station
 - Local interference (wifi, etc.)
 - Local downstream / upstream bandwidth
 - ISPs downstream / upstream bandwidth (x several diverse paths)
 - ISP to ISP connectivity
 - ISP to Peer / Customer connectivity

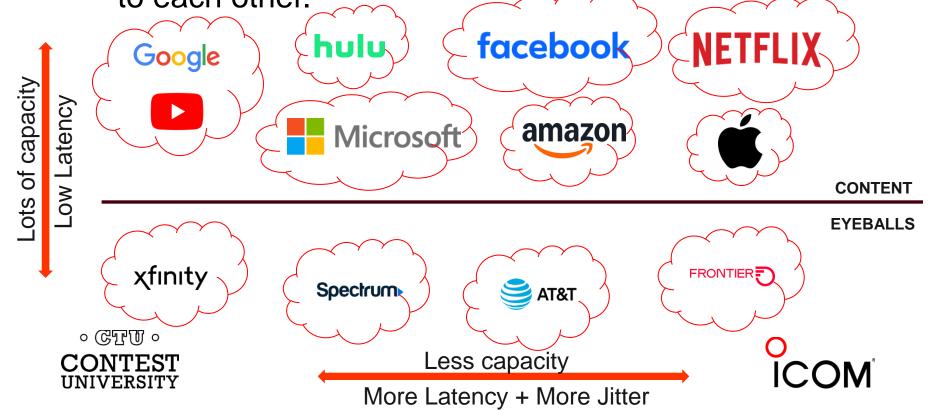


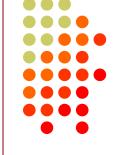
Concept: Internet Jitter

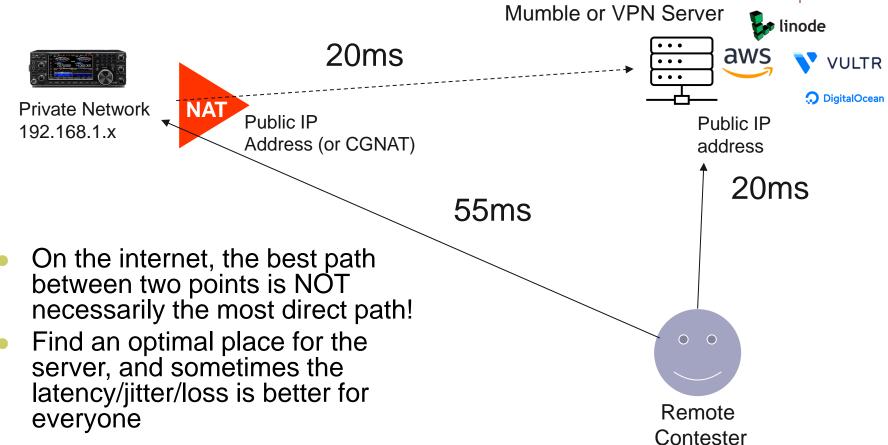


- Jitter -- The inconsistency of latency from packet to packet
 - Usually caused by attributes of the transport medium
 - Modulation changes (wireless)
 - Retransmissions (wireless)
 - Time division / airtime fairness algorithms (wireless, optical TDMA)
 - Wired almost always better than wireless
 - Could also be caused by "microbursts" of traffic/momentary congestion along the network path
 - Could be caused by load balancing (Unequal-Cost-Multi-Path) (rare)
 - End device must either buffer to "smooth" out or just assume loss if data doesn't arrive on time.






Concepts: Internet Peering 101



- Eyeball networks versus content networks
 - Home internet service providers (ISPs) usually have more capacity to/from content networks than they do to each other.

One other advantage to this setup...

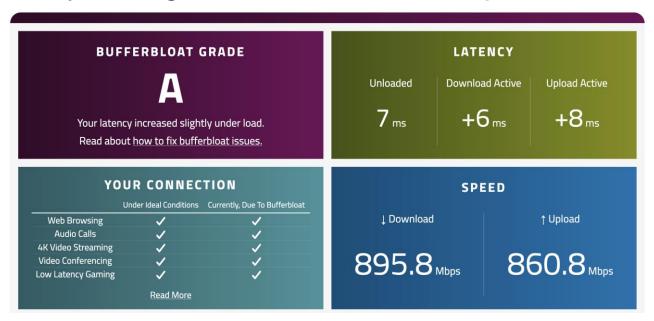
Contest Rules and Remote Ethics

- In order to use remote in many places, you may need to be LICENSED in that country (US / Canada for sure.)
- Your US CEPT privileges don't apply if you are not a US Citizen.
- A foreign national may not operate a U.S. station by remote control under CEPT, IARP, or some other reciprocal authorization
 - Must have a US license
 - These only apply to local control
- Don't get on and work only yourself (or almost only yourself) from a multiplier.
- https://www.arrl.org/contest-remote-station-operation

Characterize your networks



- To see if it is suitable for "contest-grade" remote, we need to measure the internet connections of both the remote and local sides
- How do we do that?
- Tools:
 - https://speed.cloudflare.com/
 - https://www.waveform.com/tools/bufferbloat



Finding Bufferbloat

- Bufferbloat Looking for increased latency during download/upload
- Latency during active download or upload 200ms+++

Fixing Bufferbloat / Packet Loss

- Activate "smart queuing" QoS features of your router
 - CoDel algorithm
- IQrouter / Ubiquiti

- Artificially limit bandwidth (~80%) of everything EXCEPT for the remote audio stream
- Note: If a lot of traffic is already queued by your ISP before you can slow it down, it might be too late to apply QoS

Latency – the silent rate killer

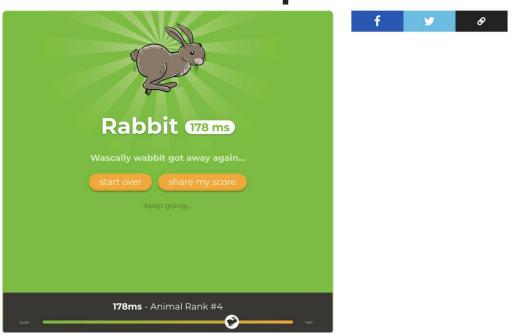
Let's take our "average" SO1R CW QSO:

8.482 seconds/QSO

7 Q's/minute

420 Q's/hour

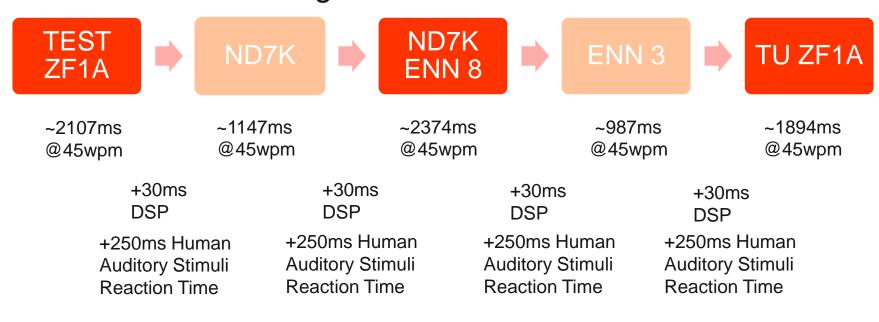
... but there's more!



Momentary aside:

- What is your reaction time to an audio stimuli?
- https://playback.fm/audio-reaction-time

Test Your Reaction Speed to Sound



Latency – the silent rate killer

Let's take our "average" SO1R CW QSO wo/remote:

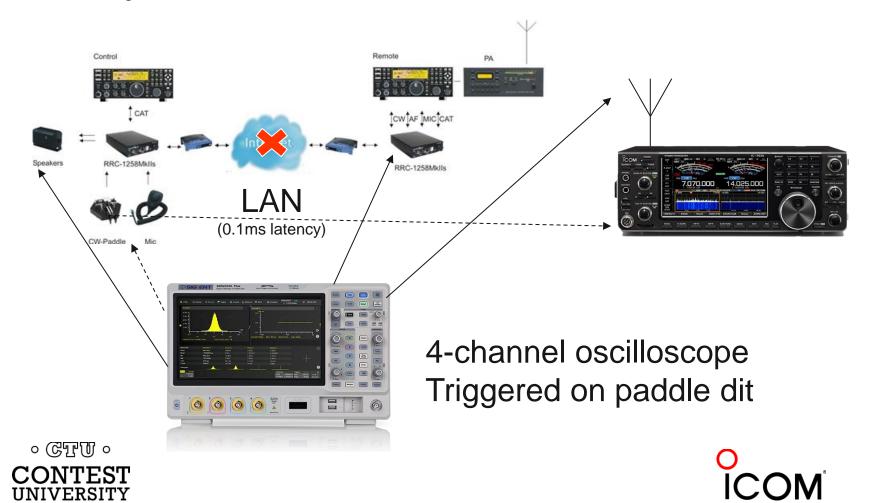
=

9.882 seconds/QSO

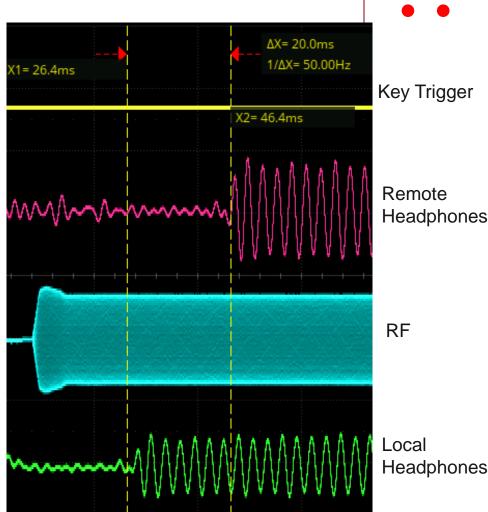
6.1 Q's/minute

=

420 -> 364 Q's/hour

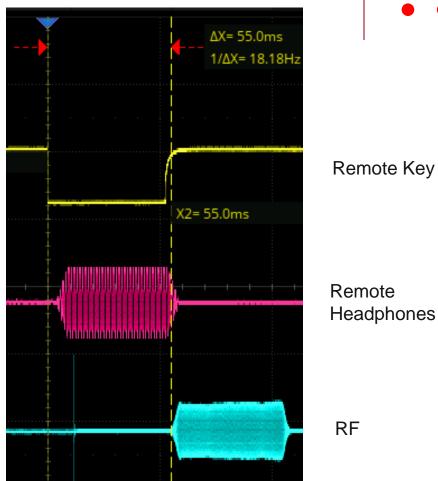


End to End Latency – Test Setup



So, let's bring in some remote. We'll start with the "gold standard" of the K3-Twin via RemoteRig 1258Mklls's

End to End Latency – RRC K3 Twin RX


- RRC-1258mkII K3-Twin RX
 - End to end RX latency of the K3-Twin setup (including DSP) is around ~41ms
 - It turns out about half of that is the DSP though.
 - So, the real end-to-end delay from the RRC is about 20ms...

End to End Latency – RRC K3 Twin TX

- RRC-1258mkII K3-Twin TX
 - TX consistently reproduced at the remote end at the end of the first element.



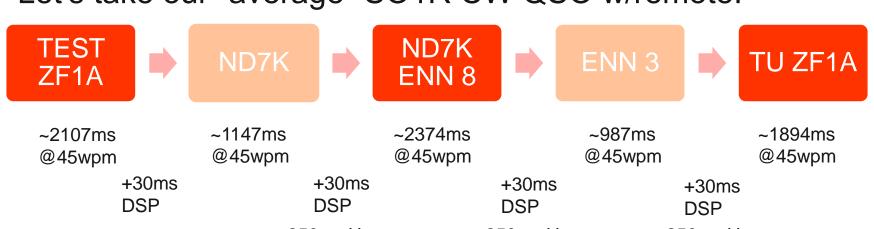
Headphones

Latency – Other Remote Solutions

• What about other remote solutions?

Setup	RX E2E (incl. DSP)	TX E2E
K3-Twin (RRC)	41ms	55ms
FlexRadio 6600 + Maestro-B	55ms-320ms*	60-90ms (inconsistent)
K4-K4	140ms-1200ms**	134ms
Mumble (through K4)	113ms-117ms	113-117ms (symmetrical)
SonoBus (through K4)	60ms***-110ms	60ms***-110ms

^{*}Depends on the filter sharpness setting, worst latency was default "auto" setting


^{**} DSP ~ 33ms; Depends on remote buffering level RX0-RX7

^{***} Minimal jitter buffer settings

Latency – the silent rate killer

Let's take our "average" SO1R CW QSO w/remote:

+250ms Human **Auditory Stimuli Reaction Time** +60ms Internet

Latency

+20ms Remote Latency TX/RX

+250ms Human **Auditory Stimuli Reaction Time** +60ms Internet

Latency

+20ms Remote Latency TX/RX

+250ms Human **Auditory Stimuli Reaction Time**

+60ms Internet

Latency

+20ms Remote

Latency TX/RX

+250ms Human **Auditory Stimuli Reaction Time**

+60ms Internet

Latency

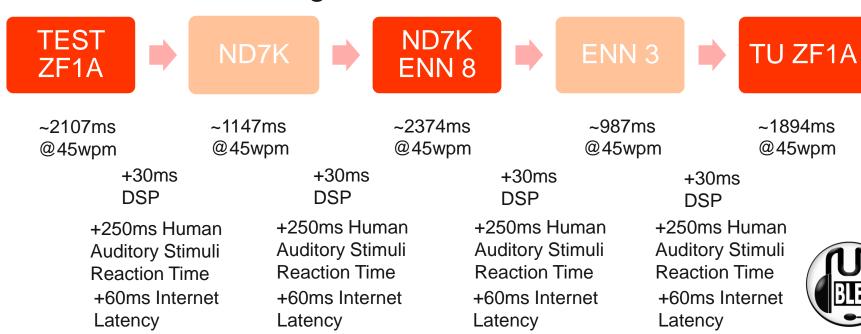
+20ms Remote Latency TX/RX

9.941 seconds/QSO = 6 Q's/minute =

360 Q's/hour = 4 Qs/hr lost (from non-remote rate of 364/hr)

CONTEST UNIVERSITY

192 Qs lost over 48 hours (1.1%)

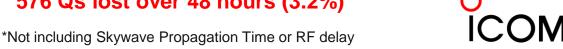

Latency – the silent rate killer

+85ms Remote

Latency TX/RX

Let's take our "average" SO1R CW QSO w/remote:

+85ms Remote


Latency TX/RX

10.209 seconds/QSO = 5.87 Q's/minute =

352 Q's/hour = 12 Qs/hr lost (from non-remote rate of 364/hr)

576 Qs lost over 48 hours (3.2%)

+85ms Remote

Latency TX/RX

+85ms Remote

Latency TX/RX

Operator Experience: Remote Desktop

- Remote desktop vs running the logger locally
- Preference towards running the logger remotely for multi-ops
 - Makes the handoff easier
- Main issues with locally running the logger
 - Do all of the keyboard shortcuts work through a remote desktop program?
 - Do I have something that makes a lot of screen updates (SmartSDR, MMTTY/2Tone, etc.)
 - With a multi-op, you'll have to use a VPN or similar to link the network the programs you'll see all kinds of quirkiness with this – everyone needs to leave their logger open. You need to make sure VPN traffic doesn't include extra-curricular activities using all of the bandwidth
 - Entirely reliant on remote transport of CW/RTTY keying and decoding
- Many use Anydesk or Teamviewer (nagware, free for non-commercial use)
- My preference: RustDesk (open-source) or Parsec (paid)
 - Run your own RustDesk Relay server!
 - Parsec is exceptional at streaming (used to remotely game)
 - Parsec has an explicit bandwidth limit per session
 - Parsec can handle multiple virtual screens on the remote side even if they don't exist
- Less inclined to use VNC or RDP due to security issues.

Operator Experience: Station Automation

0.0W

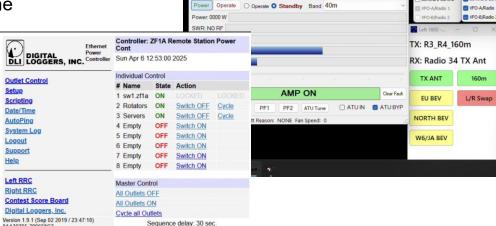
0.00:1

15M-STACK

40M-STACK

80M-2L

X-PORT-1-ANDREV


EU Bev

North Bev

Need to be able to control almost every aspect of the station

Rotators

- Stack Matches
- Antenna Switches
- Power Monitoring
- Amplifiers
- There are many solutions
 - MOAS
 - Green Heron Everywhere
 - MicroHam Station Manager / ARCO
 - PSTRotator
 - 403A "Genius" Line
 - Node Red
- Power Control
 - DLI

40M-LOG

○20W ○200W ○2KW ○AUTO ○51 ○52

AZ N/C DEAD

A3 N/C DEAD

A4 N/C DEAD

15M-STACK

LOG-DIRECT

A3 N/C DEAD

15M-STACK

20M-STACK

LOG-DIRECT

10M-STACK

AZ N/C DEAD

15M-STACK

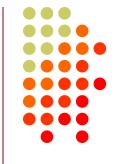
ADM-STACK

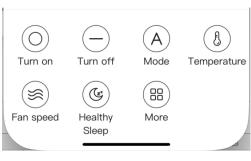
80M-2L

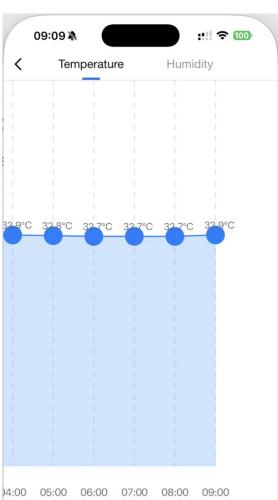
80m Ream Relays

0 0

Operator Experience: Station Monitoring


Cameras to monitor in and outside of the shack...

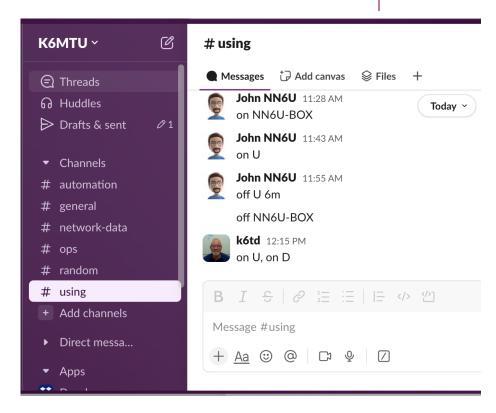



Operator Experience: Remote AC Control

Air conditioner control and temperature monitoring

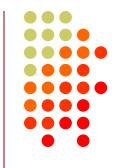
BroadLink RM4

Operator Experience: Remote AC Control


· UTO ·

CONTEST UNIVERSITY

Operator Experience: Team Communication


- Almost every remote contest station I'm involved with has a chat room in Slack or Discord
- It really helps to coordinate things between operators
- Establish a protocol for your team such that you don't step on each other or surprise the station owner
- Per-contest "rooms" often helpful

Some other practical tips

- This should be obvious, but... if you're going to have guest contest operators, have them try it out with supervision BEFORE the contest and work out the setup issues.
- Build a station diagram and survival guide, keep it up to date, distribute it to the operators
- Publish known issues with the station somewhere

Contest Rules and Remote Ethics

- In order to use remote in many places, you may need to be LICENSED in that country (US / Canada for sure.)
- Your US CEPT privileges don't apply if you are not a US Citizen.
- A foreign national may not operate a U.S. station by remote control under CEPT, IARP, or some other reciprocal authorization
 - Must have a US license
 - These only apply to local control
- Don't get on and work only yourself (or almost only yourself) from a multiplier.
- https://www.arrl.org/contest-remote-station-operation

Questions?

- Work me, spot me, see you on the bands
- bill@w9kkn.net
- Contribute your logs to Super Check Partial!
 - logs@supercheckpartial.com

